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Abstract

This report is based on the observations and the conclusions that could be drawn

about random matrix ensembles and their eigenvalues. The relation between com-

plex random matrices and circular law has also been studied. Propositions regarding

the behaviour of eigenvalues of random matrices where entries follow normal or uni-

form distributions have also been stated and computationally put forward using

MATLAB. The circular law for complex symmetric (non-hermitian) random matrix

has also been studied thoroughly. Some results based on tridiagonal & Hessenberg

reduction of real random matrix ensembles with entries normally distributed have

been studied and extended for a general case with mean zero and arbitrary non-zero

variance.
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Chapter 1

Wigner’s Semi-circle Law

Eugene Wigner had studied the distribution of the eigenvalue of a particular kind

of matrix known as Wigner matrix. A Wigner matrix is defined as a random matrix

Ai,j is a n× n matrix where n is natural number and the entries

• Ai,j, i < j are iid (real or complex valued)

• Ai,i are iid real random variables (which could possibly follow a different dis-

tribution)

• Ai,j = Aj,i ∀1 ≤ i, j ≤ n

• E[Ai,i+1] = 0, E[| Ai,i+1 |2] = 1, E[Aj,j] = 0, E[A2
j,j] = 1, where 1 ≤ i < n

and 1 ≤ j ≤ n.

1.1 Empirical Spectral Distribution

An Empirical Spectral Distribution of a square matrix A with real eigenvalues is the

probability measure of the corresponding eigenvalues λi, for i = 1, · · · , n

µA(x) =
n∑
k=1

χ(w : λk < x) ,where χ is the indicator function

For a square matrix A with complex eigenvalues the Empirical Spectral Distribu-

tion (ESD) is the probability measure of the corresponding eigenvalues λi, for i =

1, · · · , n

1
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µA(x, y) = 1
n
|{1 ≤ i ≤ n,Re λi ≤ x, Imλi ≤ y}|

The ESDs of random matrices are of great importance as their behavior when n→∞
as then it converges to specific distributions for different classes of random matri-

ces.The following law illustrates the fact about the significance of ESDs

1.2 Semi-circle Law

The semi-circle law was one of the first crucial results related to random matrices.

Theorem 1. Let Xn be the n× n Wigner random matrix. Then the ESD of 1√
n
Xn

converges to the semi-circle distribution.

The semi-circle distribution can be defined as follows

Semi-circle Distribution:- A semi-circle distribution is the probability distribution

with density
1

2π

√
4− x2 on [−2, 2]

Figure 1.1: Histogram of eigenvalues of real random symmetric matrices of size 1000
with entries following Normal (0,1) Distribution as an illustration of the Semicircle
Law
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The proof for this theorem was first given by Wigner in [15]. There are proofs

also given in [1]. The proofs available essentially involves using any of these two

methods

1. The method of moments

2. The method of Stieltjes’ transforms

A method using the invariance principle could also be used to which is a general

probabilistic technique that deduces the limit of the eigenvalues of Wigner matrices.

1.3 Gaussian Ensembles

Gaussian ensembles refers to the random matrices whose entries follow a Gaussian

(or Normal) distribution. The Gaussian ensembles that are of great importance are

the Gaussian Orthogonal Ensembles (GOE) and the Gaussian Unitary Ensembles

(GUE) which are defined as

Gaussian Ensembles : Let A be a square matrix with entries iid N(0, 1) and B be a

square matrix with entries iid CN(0, 1) then matrix X =
A+ AT

2
is called a GOE

and Y =
B +BT

2
is called a GUE. Both GOEs and GUEs have real eigenvalues as

they are all hermitian in nature. As the GOEs and GUEs can also be constructed

as Wigner matrices therfore they satisfy the semi-circle law. The joint distribution

of the eigenvalues of a GOE matrix could be computed precisely which was given

by Mehta in [10].

Theorem 2. The joint probability density function for the eigenvalues of matrices

from a Gaussian orthogonal or Gaussian unitary ensemble of size N is given by

PN(x1, x2, · · · , xN) = CN exp

(
−1

2
β

N∑
j=1

x2j

)∏
j<k

|xj − xk|2

where β = 1 for GOE and β = 2 for GUE. The constant CN is determined in such

a way that PN is normalized to unity

According to Selberg the normalization constant CN is given by

C−1N = (2π)N/2β−N/2−βN(N−1)/4[Γ(1 + β/2)]−N
N∏
j=1

Γ(1 + βj/2)



Chapter 2

Circular Law

The spectral distribution for non-hermitian random matrices with complex entries

converges to a uniform distribution on a circular disc was proposed by Girko [6] as

Proposition 1 (Circular Law Conjecture). Let Xn be the n × n random matrix

whose entries are iid complex (non-hermitian) random variables with mean 0 and

variance 1. Then the ESD of 1√
n
Xn converges (both in probability and in the almost

sure sense) to the uniform distribution on the unit disc around origin.

Although a lot of proofs have been given by many but most of them use some

additional assumptions but still the above Circular Law remains a conjecture

Figure 2.1: Plot of eigenvalues of 10 random matrices whose entries have real &
imaginary part as iid N(0,1) and 500 size after being scaled by

√
2 size illustrating

the Circular Law Conjecture. The factor
√

2 is required as entries are made iid
CN(0, 1) by taking real and imaginary part both as iid N(0, 1).

4
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The Circular Law Conjecture has been found to be true for complex random

matrices with entries following normal or uniform distributions with non-zero mean

and non-unity variance. It was also observed based on numerical evidences that

for entries following non-zero mean resulted in two discs being formed one around

the origin and the other formed by largest eigenvalue of each matrices whose center

depends on the mean of the distribution of the entries.

2.1 Problems Faced in Proving Circular Law

The circular law for complex matrices could be imagined as the normal extension

of the Wigner semi-circle law as it the semi-circle gets extended to form a full circle

as the entries of the matrices have both real and imaginary components. But the

proof becomes non-trivial because of the following reasons

• Truncation leads to errors: A small change in the values of a random matrix

might produce a large change in their eigenvalues thereby rendering truncation

methods to be redundant.

• Failure of the Moment Method: The method of moments used successfully

for Hermitian matrices but it fails for general complex matrices as the claims

about the distribution of a complex matrix do not have any simple form to

determine their distribution by uniquely determining their mixed moments of

some matrix form of original matrix ensemble.

• Difficulty in Method of Stieltjes’ transforms: Some results utilizing Stieltjes’

transforms used in case of Wigner matrices do not hold through for proving

the circular law. Problems regarding the bounds and mathematical analysis

of convergence of Stieltjes’ transforms seem to be the shortcomings of this

method in proving the circular law.
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2.2 Interesting Observations Based on Circular

Law

Although the circular law has not been proved like the Wigner semi-circle law but

it provides interesting observations and some useful conclusions to be drawn from

it. Behaviour of complex random matrix ensembles by varying the nature of the

entries of the matrices have been mentioned below.

When the entries of the random matrix ensemble are complex numbers with real

and imaginary part iid Normal distribution N(µ, σ2) (say) then it could be observed

that the largest eigenvalue (in magnitude) for each random matrix considered is

distributed in a smaller circular disc around the value

nµ (1 + i)

in the argand plane, where n is the size of the random matrix. The case is same when

(a) (b)

Figure 2.2: (a) Plot of eigenvalues of 10 random matrices whose entries have real &
imaginary part as iid N(1, 1) and 200 size showing the central disc and the disc of
largest eigenvalues centered around (200,200). (b) Plot of eigenvalues of 10 random
matrices whose entries have real & imaginary part as iid U(0, 1) and 200 size showing
the central disc and the disc of largest eigenvalues centered around (100,100).

the real and imaginary part of the random matrix entries are iid Uniform distribution

in (a,b) where the mean is µ = a+b
2

. The nature of the spectral distribution being



7

independent of the distribution followed by the matrix entries might be the basis

for universality which would be discussed later.

The case when the real part of entries of the matrix are all a constant c (say)

and the imaginary parts are iid Normal or Uniform distribution with mean µ then

the largest eigenvalue for each random matrix is distributed on a line parallel to the

imaginary axis around the value n c+ nµ i in the argand plane, where n is the size

of the random matrix considered. The variation of the largest eigenvalue seems to

be fixed only in the imaginary part as their real part remains fixed at n c but their

imaginary part varies slightly corresponding to the distribution of the imaginary

part of each entries of the matrix and the real part remaining constant.

(a) (b)

Figure 2.3: (a) Plot of eigenvalues of 10 random matrices whose entries have real
part as 3 & imaginary part as iid N(2, 52) and 100 size with central disc and the
largest eigenvalues centered around (300,200). (b) Plot of eigenvalues of 10 random
matrices whose entries have real part as 1.5 & imaginary part as iid U(−2, 0) and
100 size with central disc and the disc of largest eigenvalues centered around (150,-
100). (In both the cases the imaginary part of the largest eigenvalues seem to vary
slightly while the real part remains constant)

The case when the real part of entries of the matrix are iid Normal or Uniform

distribution with mean µ and the imaginary parts are all constant c (say) then the

largest eigenvalue for each random matrix is distributed on a line parallel to the
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real axis around the value nµ + n c i in the argand plane, where n is the size of

the random matrix considered. This variation shows that the distribution of the

real part results in the variation of the real component of the eigenvalues while the

imaginary component remains constant.

(a) (b)

Figure 2.4: (a) Plot of eigenvalues of 10 random matrices whose entries have real
part as iid N(2, 1) & imaginary part as 1.5 and 100 size showing the central disc
and the largest eigenvalues centered around (300,200). (b) Plot of eigenvalues of 10
random matrices whose entries have real part as iid U(0, 3) & imaginary part as 1
and 100 size showing the central disc and the disc of largest eigenvalues centered
around (150,100).

In order to illustrate the observations above MATLAB has been used to produce

random matrix ensembles using random() function for producing random variables

following normal or uniform distributions. The eig() function is used to compute

the eigenvalues of random matrices and scatter plot has been used to plot these

eigenvalues in the argand plane. A result for complex Gaussian matrix ensembles is

given below proved by Ginibre [5] [1965].

Theorem 3 (Ginibre 1965,Mehta 1967). If we assume the real and imaginary parts

of the entries Mn = mij are i.i.d. N(0, 1). Then the joint distribution of the eigen-

values of Mn has density with respect to the Lebesgue measure in Cn,
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p(z1, · · · , zn) =

(
πn

n∏
j=1

j!

)−1
exp

(
−

n∑
j=1

|zj|2
) ∏

1≤i<j≤n

|zi − zj|2

The above theorem provides us with the joint distribution of the eigenvalues ex-

plicitly but they are not of great importance as it could not be completely related to

the corresponding matrix entries and thereby an explicit relation of the distributions

of the matrix entries and the eigenvalues is not achievable.

Another fact worth noticing is that the matrices are to be scaled by σ
√

2n in order

to restrict the spectral distribution to unit circular disc, where n is the size of the

random matrix and σ is the standard deviation of the distribution of the matrix

entries. Thus it becomes obvious that the radius of central spectral disc of random

matrices (entries following a fixed distribution) increases with O(n) (order n), where

n is the size of the matrix.



Chapter 3

Complex Symmetric Matrix

Ensembles With Entries Having

Arbitrary Mean & Variance

In this chapter we deal with complex random matrices having entries following

Normal or Uniform Distribution. As hermitian random ensembles have been widely

worked upon and many results have also been established, it would be interesting

to observe the behavior of complex symmetric (non-hermitian) random matrices

with both real and imaginary part of entries iid Normal or Uniform distributions

with arbitrary mean and variance. The results about complex random matrix and

circular law have been studied by Ginibre [5], Girko [7], Mehta [10], Terence Tao

[12][14], Manjunath Krishnapur [12][14] and Vu [12]. The study of circular law

for complex symmetric (non-hermitian) random matrices has yielded the following

observations and results. The variation of the central spectral radius for varying

mean and variance has been studied. MATLAB has been used to generate random

ensembles with complex entries following different probabilities and varying mean

and standard deviations then finding the eigenvalues of matrices using eig() function.

The random matrices are made complex symmetric by equating the lower diagonal

entries to the upper diagonal entries.

10
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3.1 Normally Distributed Matrix Ensembles

In order to study the distribution of the eigenvalues for random ensembles with

entries following Normal distributions are considered based on the value of mean of

the distribution.

3.1.1 Normally Distributed Matrix Ensembles with Zero

Mean

A proof for the Circular Law has been proposed in a paper of Girko [6] but it has

not yet been understood (translation from Russian might be one of the problems).

For complex symmetric random matrices with real and imaginary part iid Normal

distributions with mean zero and varying standard deviation the central spectral

radius seems to be directly proportional to the square root of the size of the random

matrix and to the standard deviation of the normal distribution. When the random

matrices are normalized by the σ
√

2n then the eigenvalues follow the Circular Law

Conjecture, where n is the size of the random matrices & σ is the standard deviation

of the normal distribution followed by each entry of the random matrix.

Let Xn be an n × n random matrix with the real and imaginary part iid Normal

Distribution with mean 0 and variance σ2 then the ESD of
1

σ2
Xn converges (both

in probability and in the almost sure sense) to the uniform distribution on the unit

disc around origin.

3.1.2 Normally Distributed Matrix Ensembles with Non-

Zero Mean

For random complex symmetric matrix with entries iid normal distribution N(µ, σ2)

with non-zero mean µ and standard deviation σ. The observations are similar to

the zero mean case with just an additional circular disc for the largest eigenvalues of

each random matrix. The disc for the largest eigenvalue is centered around the point

nµ+ nµ i in the argand plane, where n is the size of the random matrix & µ is the

mean of the distribution followed by each entry. The radius of the disc consisting of

the largest eigenvalues also increases linearly with increase in the standard deviation
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of the distribution followed by each entry of the random matrix.

3.1.3 Uniformly Distributed Matrix Ensembles

The complex symmetric random matrices with real and imaginary parts iid uni-

form distribution also satisfies the Circular Law. The spectral distribution for the

Uniformly distributed ensembles is analogous to the spectral Normal distributed

ensembles.

3.1.4 Uniform Distribution With Zero Mean

The central spectral radius is directly proportional to the square root of the size of

the random matrix and to the standard deviation of the distribution.

Again, for Xn an n×n random matrix with the real and imaginary part iid Uniform

Distribution with mean 0 and variance σ2 then the ESD of
1

σ2
Xn converges (both

in probability and in the almost sure sense) to the uniform distribution on the unit

disc around origin.

There are not much documentation for properties about Uniformly distributed en-

sembles. The similarity of their spectral distribution to the Normally distributed

ensembles might be one of the reasons.

3.1.5 Uniform Distribution With Non-Zero Mean

When the real and the imaginary parts are iid with Uniform distribution U(a, b),

where a & b (say a < b) with mean a+b
2

and standard deviation
√

a2+b2

12
then similarly

the disc for the largest eigenvalue is centered around the point nµ+nµ i in the argand

plane, where n is the size of the random matrix & µ is the mean of the distribution

followed by each entry. These various observations and results suggest an underlining

’Universality Principle’ at work as the spectral distribution seem to be dependent

on the parameters of the distribution followed by each entry of the matrix rather

than the nature of the distribution followed by each entry of the random matrix.
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3.2 Universality And Random Matrices

This topic has been well documented in [12] even for complex symmetric ensembles

the universality phenomenon is exhibited in their spectral distributions.

Theorem 4 (Central Limit Theorem). Let {X1, X2, · · · , Xn} be a random sample of

size n that is a sequence of iid random variables drawn from distribution of expected

values given by µ and finite variances by σ2. Then

√
n

((
1

n

n∑
i=1

Xi

)
− µ

)
−→ N(0, σ2)

An observation analogous to the Central Limit Theorem in probability could also

be observed in the cases of random ensembles where the entries are independent and

identically distributed a probability distribution. Universality causes the system to

be simpler, i.e. as the complexity increases then the factors on which a quantity

depends becomes less complex.

(a) (b)

Figure 3.1: (a) Plot of eigenvalues of 15 random matrices whose entries have real
part & imaginary part as iid N(25, 1002) and 500 size. (b) Plot of eigenvalues of 15
random matrices whose entries have real part & imaginary part as iid N(25, 1002)
of 500 size after subtracting M = (mj,k), mj,k = 25 + 25 i, ∀ j, k and then scaling
the resultant by 100

√
1000.
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Proposition 2. Let A = (aj,k)n×n be a complex symmetric (non-hermitian) random

matrix where E[aj,k] = µ and V ar[aj,k] = σ2, where 1 ≤ j, k ≤ n then the distribution

of eigenvalues of
1

σ
√

2n
(A−M), where M = (mj,k)n×n and mj,k = (µ + µ i), 1 ≤

j, k ≤ n are distributed uniformly over the unit circular disc around origin.

A similar observation could be found for entries iid uniform distribution as the

proposition mentioned previously seems to be valid irrespective of the nature of

distribution followed by the entries of the random matrix ensemble.

(a) (b)

Figure 3.2: (a) Plot of eigenvalues of 15 random matrices whose entries have real
part & imaginary part as iid U(−5, 10) and 500 size. (b) Plot of eigenvalues of 15
random matrices whose entries have real part & imaginary part as iid U(−5, 10) of
500 size after subtracting M = (mj,k), mj,k = 2.5 + 2.5 i, ∀ j, k and then scaling the
resultant by 4.3301

√
1000.

Another result which indicates at some form of Universality at work with com-

plex symmetric eigenvalues is the variation of the radius of the central spectral disc

for random matrix ensembles with entries iid normal and uniform distributions.

These observations are also true for entries iid distributions other than normal and

uniform distributions. It is important to observe that the both normal & uniform

distributions having the same variance seemed to be having very close (sometimes

even overlapping) variation of the central spectral radius with size. The plot of
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Figure 3.3: Variation of the central spectral radius with size of the matrix

√
2n also helps to understand the increase in the radius in every case is a multiple

of it which we had mentioned earlier that if we scale the matrix by σ
√

2n then the

eigenvalues are distributed uniformly over the unit circular disc at origin.

The variation of the radius of the disc corresponding to the largest eigenvalue of

each of the random matrix seems to be independent of the size of the matrix and

increases with increase in standard deviation of the distribution followed by the en-

tries for a fixed number of random matrices. This phenomenon could be explained

as each random matrix has a single largest value and even though the size increases

as the standard deviation and the number of random matrices are constant the ra-

dius remains approximately constant.

In order to study the properties of complex symmetric random matrices several
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approaches could be used to form complex symmetric random matrices. A ran-

dom matrix A could be formed by using MATLAB and generating complex entries

with real and imaginary part following any probability distribution then any of the

following methods could be used to form a complex symmetric matrix are

• A is formed by equating Ai,j = Aj,i

• B = (A+ AT )/2

• B = A× AT

The results thus far are based on the first approach but the similar results could also

be found for the other methods. The certain variations that are present are because

of the variation in the parameters of the distributions due to the methods used

in order to create the complex symmetric matrices. As stated earlier the spectral

distributions seem to be independent of the nature of distribution of the random

entries.

When the matrices are created by the second procedure then the mean of each of the

entries remains the same as the mean of the entries of A but the standard deviation

is altered as when B = (A+ AT )/2 then

var(Bi,j) =
var(Aij) + var(Aj,i)

22
[As var(Ai,j) = var(Aj,i)]

=
2 var(Ai,j)

4

=
var(Ai,j)

2

Similarly, when the symmetric matrices are created with the third approach as

A × AT then the observations for spectral distributions are similar but the mean

and the standard deviation vary as the mean and variance are altered and could be

computed for each entry using the following relations. If a, b be be independently

distributed with E[a] = µa & E[b] = µba and V ar[a] = σ2
a & V ar[b] = σ2

b then

E[a+ b] = µa + µb var[a+ b] = σ2
a + σ2

b

E[a b] = µa µb var[a b] = σ2
a σ

2
b + µa

2 σ2
b + µb

2 σ2
a. [4]



Chapter 4

Normally Distributed Real Matrix

Ensembles

The real ensemble is also interesting and though the real entries are simpler to han-

dle but the spectral distribution of real ensembles are complicated as the eigenvalues

could be both real and imaginary. There have been studies based on which Real

Gaussian Ensembles could be transformed orthogonally to hessenberg forms and

from their the eigenvalue distribution could be calculated by numerical approxima-

tions.

Random matrices with real entries have been studied for the symmetric real case

known as GOEs. Another approach for the study of eigenvalues could be tridiagonal-

ization of a symmetric matrix by using Householder Rotations which are orthogonal

transformations to reduce it to a tridiagonal matrix having the same eigenvalues as

the symmetric matrix thereby preserving the spectral distribution.

The procedure used for tridiagonal reduction of symmetric matrices can be illus-

trated below.

17
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4.1 Tridiagonalization & Hessenberg Reduction

using Householder Transformations

Firstly, we consider a size n random matrix A such that

A =


a1 b1,2 b1,3 · · · b1,n

b1,2 a2 b2,1 · · · b2,n
...

...
...

. . .
...

b1,n b2,n b3,n · · · an


where ai ∼ N(0, 1) and bi,j ∼ N(0, 1).

We can represent A as

A =

[
a1 vT

v An−1

]
(4.1.1)

Theorem 5. Let v = [x1, x2, · · · , xn]T be a non-zero vector in Rn, there exists a

Householder transformation Pn of order n such that

Pn v = α e1 (4.1.2)

where αεR, e1 = [ 1, 0, · · · , 0] is an elementary vector in Rn and α = ‖v‖2

Therefore we can find a Householder Transformation P1 which transforms the

column vector u in (4.1.1) to a column vector ‖u‖2 e1 which is the one of the main-

stays of tridiagonal and hessenberg reduction thereby aiding the process of possible

numerical computations of eigenvalues of any given matrix. The procedure could be

illustrated for any given symmetric matrix A = (ai,j) then the tridiagonal reduction
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can be explained as

Q1AQ1
T =

[
1 0

0 P1

] [
a1 vT

v An−1

] [
1 0

0 P1

]
(4.1.3)

=

[
a1 uT P1

P1 u P1An−1 P1

]
(4.1.4)

=



a1 c1 0 · · · 0

c1 b11 b12 · · · b1,n−1

0 b21 b22 · · · b2,n−1
...

...
...

. . .
...

0 bn−1,1 bn−1,2 · · · bn−1,n−1


(4.1.5)

Now, the matrix B = (bi,j) in (4.1.5) is a symmetric matrix of size n − 1 as the

matrix P1AP1 in (4.1.4) is symmetric as A = AT and we can continue the process

by now considering

B =

[
b11 vT1

v1 Bn−2

]

Again we have to find a Householder reflector P2 which would satisfy P2 v1 = ‖v1‖2
and the same process could be continued as in (4.1.3) till a tridiagonal matrix is

formed. We can define P = Un−2 Un−3 · · ·U1AU1 · · ·Un−3 Un−2 where
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P AP T = Un−2 Un−3 · · ·U1AU1 · · ·Un−3 Un−2

=



d11 d12 0 0 · · · 0

d21 d22 d23 0 · · · 0

0 d32 d33 d34 · · · 0
...

...
. . . . . . . . .

...

0 · · · 0 dn−1,n−2 dn−1,n−1 dn−1,n

0 · · · 0 0 dn,n−1 dn,n


(4.1.6)

In (4.1.6) Uk is defined as

Uk =

[
Ik 0

0 Pk

]
, k = 1, 2, · · · , n− 2.

From the above definition it follows that Uk is symmetric as Pk is symmetric. There-

fore this construction implies that P is orthogonal in nature.

A similar procedure is applicable to any arbitrary matrix but in that case A in

equation (4.1.1) is not reducible to the tridiagonal form as v 6= vT . Thus Q can be

constructed in a similar manner as earlier and hence the form in (4.1.5) becomes

QAQT =



a1 c12 c13 · · · c1,n

c1 b11 b12 · · · b1,n−1

0 b21 b22 · · · b2,n−1
...

...
...

. . .
...

0 bn−1,1 bn−1,2 · · · bn−1,n−1


Therefore the tridiagonal form reduction as for the symmetric matrix case cannot

be achieved. Thus an upper Hessenberg form can be computed by using similar
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Householder transformations

P AP T = Un−2 Un−3 · · ·U1AU1 · · ·Un−3 Un−2

=



d11 d12 d13 d14 · · · d1,n

d21 d22 d23 d24 · · · d2,n

0 d32 d33 d34 · · · d3,n
...

...
. . . . . . . . .

...

0 · · · 0 dn−1,n−2 dn−1,n−1 dn−1,n

0 · · · 0 0 dn,n−1 dn,n


Though the tridiagonal and upper Hessenberg forms are not equivalent to triangular

matrices which would give away the exact eigenvalues but the tridaigonal & upper

Hessenberg forms use lesser storage space and easier computations of eigenvalues

using numerical approximations.

4.2 Orthogonal Reduction of Normally Distributed

Random Matrix Ensembles

The above mentioned concepts could prove quite useful when the spectral distri-

butions of random matrices are considered. These could help us to compute the

eigenvalues of random matrices explicitly with use of computational methods. Sim-

ilar results have been stated in the notes of Manjunath Krishnapur [9] for GOE

and GUE matrices in particular but in this report we generalize the facts about

symmetric real matrices with entries following Normal distribution with zero mean

and arbitrary variance.

Proposition 3. Let A = (aij)n×n be a symmetric random matrix with all entries

following standard normal distribution. If A is reduced to the tridiagonal form B by

using orthogonal reduction using Householder transformations then the symmetric
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tridaigonal reduced form of A is given by

B =



c1 b1 0 0 · · · 0

b1 c2 b2 0 · · · 0

0 b2 c3 b3 · · · 0
...

...
. . . . . . . . .

...

0 · · · 0 bn−1 cn−1 bn−1

0 · · · 0 0 bn−1 cn


(4.2.1)

where all entries of B are independently distributed and approximately

ci ∼ N(0, 2) for 1 ≤ i ≤ n (4.2.2)

& the sub-diagonal and super-diagonal entries

bk
2 ∼ χ2

(n−k) , for 1 ≤ k ≤ n− 1 (4.2.3)

The fact that the sub-diagonal and super-diagonal entries satisfy (4.2.3) as the

tridiagonal reduction using Householder reflection as Householder reflection pre-

serves the ‖.‖2 for any vector (column matrix). So, the square of each sub-diagonal

elements are distributed following χ2 with reducing degrees of freedom starting from

n− 1 which is the same behaviour as the sum of the squares of random numbers iid

N(0, 1). The distribution of the of the diagonals of tridiagonal reduced form has been

illustrated using distribution fitting tool dfittool available in MATLAB which com-

putes the mean and the standard deviation of the distribution followed by the diag-

onal elements. For the normal distribution fitting in Figure 4.1 the estimated mean

is 0.016697 ± 0.0642113 (error) and the standard deviation is 1.43581 ± 0.0454725

(error) which verifies the proposition given earlier as the diagonals are approximately

N(0, 2). Note that the symmetric random matrices are constructed by equating the

upper and lower triangular entries.

Now in the case of random matrices with entries following a normal distribution

with mean 0 but arbitrary variance σ2 (say) then an analogous phenomenon was
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Figure 4.1: The histogram of the diagonal elements of the tridiagonal reduced form
of a symmetric matrix of size 500 with all entries iid N(0, 1) using Householder
reflections and a normal distribution fit illustrating their distribution.

observed with a corresponding change in the variance of the corresponding entries

of tridiagonal form which has been put forward in the following proposition.

Proposition 4. Let A = (aij)n×n be a symmetric random matrix with all entries

following normal distribution with mean 0 & arbitrary variance σ2 (σ > 0). If A is

reduced to the tridiagonal form B by using orthogonal reduction using Householder

transformations then the symmetric tridiagonal reduced form of A is given by

B =



c1 b1 0 0 · · · 0

b1 c2 b2 0 · · · 0

0 b2 c3 b3 · · · 0
...

...
. . . . . . . . .

...

0 · · · 0 bn−1 cn−1 bn−1

0 · · · 0 0 bn−1 cn


(4.2.4)

where all the entries of B are independently distributed and approximately

ci ∼ N(0, 2σ2) , for 1 ≤ i ≤ n (4.2.5)
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& the sub-diagonal and super-diagonal entries

bk
2 ∼ Non-central χ2

(n−k) , for 1 ≤ k ≤ n− 1 (4.2.6)

( Non-central χ2
(n−k) random variables could be generated by summing up squares

of n− k random variables iid N(0,σ2) )

Figure 4.2: The histogram of the diagonal elements of the tridiagonal reduced form
of a symmetric matrix of size 500 with all entries iid N(0, 100) using Householder
reflections and a normal distribution fit illustrating their distribution.

In this case also the square of each sub-diagonal elements are distributed fol-

lowing χ2 with reducing degrees of freedom starting from n − 1 which is the same

behaviour as the sum of squares of random numbers iid N(0, σ2).

In order to generalize the results regarding orthogonal transformation of real

random matrix ensembles we can consider non-symmetric real matrices with entries

following N(0, σ2) distribution and reducing the matrix to an upper Hessenberg form

using Householder transformations. The Hessenberg form could be the next best

thing to getting a triangular matrix as computational methods could be applied to

exact non repeated eigenvalues. For the normal distribution fitting in Figure 4.2

the estimated mean is −0.0536957± 0.649359 (error) and the standard deviation is
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14.5201± 0.459856 (error) which verifies the proposition given earlier as the diago-

nals are approximately N(0, 2σ2).

Proposition 5. Let A = (aij)n×n be a non-symmetric random matrix with all en-

tries following normal distribution with mean 0 & arbitrary variance σ2 (σ > 0). If

A is reduced to the upper Hessenberg form H by using orthogonal reduction using

Householder transformations then

H =



c11 c12 c13 c14 · · · c1n

b1 c22 c23 c24 · · · c2n

0 b2 c33 c34 · · · c3n
...

...
. . . . . . . . .

...

0 · · · 0 bn−1 cn−1,n−1 cn−1,n

0 · · · 0 0 bn−1 cn,n


(4.2.7)

where all the entries of H are independently distributed and approximately

ci,j ∼ N(0, σ2) , for 1 ≤ i ≤ n , i ≤ j ≤ n (4.2.8)

& the sub-diagonal entries

bk
2 ∼ Non-central χ2

(n−k) , for 1 ≤ k ≤ n− 1 (4.2.9)

The illustration in Figure 4.3 shows that the upper triangular elements ci,j of the

upper Hessenberg form in (4.2.7) illustrates the previous proposition as the normal

distribution fitting has the distribution N(0, 602).

This proposition could enable us to calculate the eigenvalues of any given random

matrix ensemble with entries following Normal Distribution with mean as 0 and any

arbitrary variance. Then eigenvalues of the matrix ensemble could be obtained by

reduction of the corresponding Hessenberg form to a triangular matrix thereby the

diagonal entries giving away the eigenvalues.
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Figure 4.3: The histogram of the upper triangular elements ci,j of the upper Hes-
senberg reduced form of a matrix of size 500 with all entries iid N(0, 602) using
Householder reflections and a normal distribution fit illustrating their distribution.

But the same could not be said about random matrix ensembles with entries

being Normally distributed with non-zero mean as the case when the mean of the

distribution followed by the random matrix entries the distribution does not remain

invariant to orthogonal transformations unlike the case when of random matrices

having entries normally distributed with mean zero.

These conclusions could be drawn as the plots of the row entries illustrates the fact

that the upper diagonal entries of the reduced Hessenberg form (non-zero mean)

follow normal distribution but the no conclusions could be drawn regarding the of

each row entries after corresponding orthogonal reduction variance and the mean.

Still there is an interesting observation that the mean of the distribution of the row

entries goes on decreasing to ultimately end up very close to zero as we go down the

rows of the Hessenberg reduced form whereas the variance remains invariant.



Chapter 5

Future Prospects

As the field of random matrix ensembles is a vast and open field of mathematics with

most of the useful work being subjected to fixed classes of random matrices (as they

find a lot of applications) which could harness us towards a path of finding some

results which could find useful applications. this approach is quite counter-intuitive

to the conventional path of finding a class of random matrix with applications and

then figuring out its properties. The generalizations of the tridiagonal & Hessenberg

reduction of the real Gaussian ensembles could be used to compute and study the

distribution of eigenvalues of them. One of the use of the approximation of tridi-

agonal & Hessenberg reduction could be in the computation of eigenvalues and the

estimation of the spectral distribution of random matrices with entries iid N(0, σ2).

In order to illustrate an interesting observation firstly let us consider a symmetric

real random matrix A = (ai,j)n×n, where ai,j ∼ N(0, σ2) and let a symmetric matrix

B be of the form as in (4.1.6) where the diagonal entries are N(0, 2σ2) (σ > 0) and

the sub-diagonal and super-diagonal entries are iid Non-central χ2
n−k, where k is

the the column and the row index respectively.

The above illustrations shows that though a slight change in entries of a matrix

might change the eigenvalues but when we consider a random matrix A and another

independently created random matrix B and study the spectral distributions of both

of them then it would show that they are close enough for these matrices to have a

relation between them. This fact also suggests that matrices constructed as B could

be used to approximate matrices such as A thereby reducing the storage of large

27
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(a) (b)

Figure 5.1: (a) Histogram of eigenvalues of random matrix of size A of size 500 and
σ = 50. (b) Histogram of eigenvalues of random matrix of size B of size 500 and
σ = 50.

random matrices to easily workable Tridiagonal form matrix. Similar results could

be also found for a general non-symmetric matrix with entries iid N(0, σ2) but there

we end up working with Hessenberg reduced form but it is tougher to illustrate as

the eigenvalues are complex in nature. But they show similar relationship when we

consider their absolute values or even real and imaginary parts.

Another interesting problem could be using the same approach of orthogonal

transformations to study the properties of AAT , where A has entries iid normal

distribution. It would be tough as the entries would not follow a normal distribution

and some approximation could also be necessary. But, still as many natural processes

could be generalized as product of random matrices the approach could possibly lead

to some fruitful work in the future.

Lastly, random matrices could also find some application in matrix completion where

we could have a partially filled random matrix and try to come up with a conclusion

about the exact distribution of the original matrix entries. There could be also a case

where are required to eliminate noise which follows some normal distribution from

a matrix system where these propositions put forward in this report could prove

important. But one of the problems to the applications could be that the cases for

non-zero mean are non-trivial and hard to comprehend there exact distributions.



29

The study of effects of arbitrary orthogonal reflectors on matrices could also draw

some attention and find its application in the behaviour of random matrix ensembles

where entries follow some distribution with non-zero mean.



Conclusion

Most of the work done during the span of this summer project has been based on

the Circular Law Conjecture and the conclusions that could be drawn based on the

observations and numerical experiments based on MATLAB are the following:

Proposition 1 (Circular Law Conjecture). Let Xn be the n × n random matrix

whose entries are iid complex (non-hermitian) random variables with mean 0 and

variance 1. Then the ESD of 1√
n
Xn converges (both in probability and in the almost

sure sense) to the uniform distribution on the unit disc around origin.

The properties of the Circular Law Conjecture that have been studied with the

varying properties of the matrix entries are

Proposition 2. Let A = (aj,k)n×n be a complex symmetric (non-hermitian) random

matrix where E[aj,k] = µ and V ar[aj,k] = σ2, where 1 ≤ j, k ≤ n then the distribution

of eigenvalues of
1

σ
√

2n
(A−M), where M = (mj,k)n×n and mj,k = (µ + µ i), 1 ≤

j, k ≤ n are distributed uniformly over the unit circular disc around origin.

The conclusions for random matrices with real entries being normally distributed

have been given below. The application of orthogonal reduction of to these matri-

ces have been studied and the properties satisfied by the matrix elements are the

following:

Proposition 3. Let A = (aij)n×n be a symmetric random matrix with all entries

following standard normal distribution. If A is reduced to the tridiagonal form B by

using orthogonal reduction using Householder transformations then the symmetric

tridaigonal reduced form of A is given by

30
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B =



c1 b1 0 0 · · · 0

b1 c2 b2 0 · · · 0

0 b2 c3 b3 · · · 0
...

...
. . . . . . . . .

...

0 · · · 0 bn−1 cn−1 bn−1

0 · · · 0 0 bn−1 cn


where all entries of B are independently distributed and approximately

ci ∼ N(0, 2) for 1 ≤ i ≤ n

& the sub-diagonal and super-diagonal entries

bk
2 ∼ χ2

(n−k) , for 1 ≤ k ≤ n− 1

Proposition 4. Let A = (aij)n×n be a non-symmetric random matrix with all en-

tries following normal distribution with mean 0 & arbitrary variance σ2 (σ > 0). If

A is reduced to the upper Hessenberg form H by using orthogonal reduction using

Householder transformations then

H =



c11 c12 c13 c14 · · · c1n

b1 c22 c23 c24 · · · c2n

0 b2 c33 c34 · · · c3n
...

...
. . . . . . . . .

...

0 · · · 0 bn−1 cn−1,n−1 cn−1,n

0 · · · 0 0 bn−1 cn,n


where all the entries of H are independently distributed and approximately

ci,j ∼ N(0, σ2) , for 1 ≤ i ≤ n , i ≤ j ≤ n

& the sub-diagonal entries

bk
2 ∼ Non-central χ2

(n−k) , for 1 ≤ k ≤ n− 1
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The propositions could be used to study and approximate eigenvalues of random

matrix ensembles. One of the useful results could also be the eigenvalue distribution

exhibited by the tridiagonal random matrices with each non-zero entry following χ2

distribution. The distribution seems to be very similar to the eigenvalue distribution

of a random matrix with real Gaussian entries.



Schedule

Week 1

Study of Semi-circle Law and Circular Law with MATLAB Codes.

Week 2

Study of the relation between mean and variance of random matrix elements and

the spectral radius of the random matrices.

Week 3

Study of complex symmetric (non-hermitian) random matrices with entries follow-

ing normal or uniform distribution.

Week 4

Establishing a relation between the spectral radius and the size of the random ma-

trix, mean & variance of the matrix elements. Illustrations of the universality phe-

nomenon in the case of distribution of spectral radius of random matrices.

Week 5

Study of Householder’s Transformations for orthogonal reduction of random matri-

ces with the entries being real and following normal distribution.

Week 6

Tridiagonalization reduction of symmetric random matrices with entries following

normal distribution.

Week 7

Hessenberg reduction of non-symmetric random matrices with entries following nor-

mal distribution.

Week 8

Studying the behaviour of Hessenberg reduction of random matrices with real entries

following normal distribution with non-zero mean.
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